DM7

Exercice 1. 1. Montrer que pour tout $n \in \mathbb{N}^*$ l'équation $x^3 + nx = 1$ admet une unique solution dans \mathbb{R}^+ . On la note x_n .

- 2. Montrer que $x_{n+1}^3 + nx_{n+1} 1 < 0$.
- 3. En déduite que la suite $(x_n)_{n\in\mathbb{N}}$ est décroissante.
- 4. Justifier que la suite est minorée par 0 et majorée par 1.
- 5. En déduire que $(x_n)_{n\in\mathbb{N}}$ converge.
- 6. A l'aide d'un raisonement par l'absurde justifier que cette limite vaut 0.

Exercice 2. On définit la fonction $sinus\ hyperbolique\ de\ \mathbb{C}\ dans\ \mathbb{C}\ par$

$$\forall z \in \mathbb{C}, \sinh(z) = \frac{e^z - e^{-z}}{2}$$

- 1. Etude de la fonction sinh sur \mathbb{C} .
 - (a) Que vaut sinh(z) quand z est imaginaire pur?
 - (b) La fonction sinh est elle injective?
- 2. On note sh la restriction de la fonction sinh à $\mathbb R$:

$$\mathrm{sh}: \left| \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \frac{e^x - e^{-x}}{2} \end{array} \right|$$

Etude de la fonction sh sur \mathbb{R} .

- (a) Etudier la fonction sh.
- (b) Montrer que sh réalise une bijection de R sur un ensemble que l'on précisera.
- 3. Etude de la réciproque. On note argsh : $\mathbb{R} \to \mathbb{R}$ la bijection réciproque de sh.
 - (a) Comment obtenir la courbe représentative de argsh à partir de celle de sh.
 - (b) On note $\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$. Montrer que pour tout $x \in \mathbb{R}$, $\operatorname{ch}^2(x) \operatorname{sh}^2(x) = 1$
 - (c) Démontrer que arg
sh est dérivable sur $\mathbb R$ et que l'on a :

$$\forall x \in \mathbb{R}, \operatorname{argsh}'(x) = \frac{1}{\sqrt{1+x^2}}$$

- (d) En résolvant $y = \operatorname{sh}(x)$ déterminer l'expression de $\operatorname{argsh}(y)$ en fonction de y et retrouver ensuite le résultat de la question précédente.
- 4. Etudier la limite de $\operatorname{argsh}(x) \ln(x)$ quand $x \to +\infty$.